1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

use core::hash::Hash;
cfg_if::cfg_if! {
    if #[cfg(any(
        all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri)),
         all(any(target_arch = "arm", target_arch = "aarch64"), any(target_feature = "aes", target_feature = "crypto"), not(miri), feature = "stdsimd")
    ))] {
        use crate::aes_hash::*;
    } else {
        use crate::fallback_hash::*;
    }
}
cfg_if::cfg_if! {
    if #[cfg(feature = "specialize")]{
        use crate::BuildHasherExt;
    }
}
cfg_if::cfg_if! {
    if #[cfg(feature = "std")] {
        extern crate std as alloc;
    } else {
        extern crate alloc;
    }
}

use alloc::boxed::Box;
use core::sync::atomic::{AtomicUsize, Ordering};
use core::any::{Any, TypeId};
use core::fmt;
use core::hash::BuildHasher;
use core::hash::Hasher;

pub(crate) const PI: [u64; 4] = [
    0x243f_6a88_85a3_08d3,
    0x1319_8a2e_0370_7344,
    0xa409_3822_299f_31d0,
    0x082e_fa98_ec4e_6c89,
];

pub(crate) const PI2: [u64; 4] = [
    0x4528_21e6_38d0_1377,
    0xbe54_66cf_34e9_0c6c,
    0xc0ac_29b7_c97c_50dd,
    0x3f84_d5b5_b547_0917,
];

cfg_if::cfg_if! {
    if #[cfg(all(feature = "compile-time-rng", any(test, fuzzing)))] {
        #[inline]
        fn get_fixed_seeds() -> &'static [[u64; 4]; 2] {
            use const_random::const_random;
        
            const RAND: [[u64; 4]; 2] = [
                [
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                ], [
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                ]
            ];
            &RAND
        }
    } else if #[cfg(all(feature = "runtime-rng", not(fuzzing)))] {
        #[inline]
        fn get_fixed_seeds() -> &'static [[u64; 4]; 2] {
            use crate::convert::Convert;
        
            static SEEDS: OnceBox<[[u64; 4]; 2]> = OnceBox::new();
        
            SEEDS.get_or_init(|| {
                let mut result: [u8; 64] = [0; 64];
                getrandom::getrandom(&mut result).expect("getrandom::getrandom() failed.");
                Box::new(result.convert())
            })
        }
    } else if #[cfg(feature = "compile-time-rng")] {
        #[inline]
        fn get_fixed_seeds() -> &'static [[u64; 4]; 2] {
            use const_random::const_random;
        
            const RAND: [[u64; 4]; 2] = [
                [
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                ], [
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                    const_random!(u64),
                ]
            ];
            &RAND
        }
    } else {
        fn get_fixed_seeds() -> &'static [[u64; 4]; 2] {
            &[PI, PI2]
        }        
    }
}

cfg_if::cfg_if! {
    if #[cfg(not(all(target_arch = "arm", target_os = "none")))] {
        use once_cell::race::OnceBox;

        static RAND_SOURCE: OnceBox<Box<dyn RandomSource + Send + Sync>> = OnceBox::new();
    }
}
/// A supplier of Randomness used for different hashers.
/// See [set_random_source].
pub trait RandomSource {

    fn gen_hasher_seed(&self) -> usize;

}

struct DefaultRandomSource {
    counter: AtomicUsize,
}

impl DefaultRandomSource {
    fn new() -> DefaultRandomSource {
        DefaultRandomSource {
            counter: AtomicUsize::new(&PI as *const _ as usize),
        }
    }

    #[cfg(all(target_arch = "arm", target_os = "none"))]
    const fn default() -> DefaultRandomSource {
        DefaultRandomSource {
            counter: AtomicUsize::new(PI[3] as usize),
        }
    }
}

impl RandomSource for DefaultRandomSource {
    cfg_if::cfg_if! {
        if #[cfg(all(target_arch = "arm", target_os = "none"))] {
            fn gen_hasher_seed(&self) -> usize {
                let stack = self as *const _ as usize;
                let previous = self.counter.load(Ordering::Relaxed);
                let new = previous.wrapping_add(stack);
                self.counter.store(new, Ordering::Relaxed);
                new
            }
        } else {
            fn gen_hasher_seed(&self) -> usize {
                let stack = self as *const _ as usize;
                self.counter.fetch_add(stack, Ordering::Relaxed)
            }
        }
    }
}

cfg_if::cfg_if! {
        if #[cfg(all(target_arch = "arm", target_os = "none"))] {
            #[inline]
            fn get_src() -> &'static dyn RandomSource {
                static RAND_SOURCE: DefaultRandomSource = DefaultRandomSource::default();
                &RAND_SOURCE
            }
        } else {
            /// Provides an optional way to manually supply a source of randomness for Hasher keys.
            ///
            /// The provided [RandomSource] will be used to be used as a source of randomness by [RandomState] to generate new states.
            /// If this method is not invoked the standard source of randomness is used as described in the Readme.
            ///
            /// The source of randomness can only be set once, and must be set before the first RandomState is created.
            /// If the source has already been specified `Err` is returned with a `bool` indicating if the set failed because
            /// method was previously invoked (true) or if the default source is already being used (false).
            #[cfg(not(all(target_arch = "arm", target_os = "none")))]
            pub fn set_random_source(source: impl RandomSource + Send + Sync + 'static) -> Result<(), bool> {
                RAND_SOURCE.set(Box::new(Box::new(source))).map_err(|s| s.as_ref().type_id() != TypeId::of::<&DefaultRandomSource>())
            }

            #[inline]
            fn get_src() -> &'static dyn RandomSource {
                RAND_SOURCE.get_or_init(|| Box::new(Box::new(DefaultRandomSource::new()))).as_ref()
            }
        }
}

/// Provides a [Hasher] factory. This is typically used (e.g. by [HashMap]) to create
/// [AHasher]s in order to hash the keys of the map. See `build_hasher` below.
///
/// [build_hasher]: ahash::
/// [Hasher]: std::hash::Hasher
/// [BuildHasher]: std::hash::BuildHasher
/// [HashMap]: std::collections::HashMap
#[derive(Clone)]
pub struct RandomState {
    pub(crate) k0: u64,
    pub(crate) k1: u64,
    pub(crate) k2: u64,
    pub(crate) k3: u64,
}

impl fmt::Debug for RandomState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("RandomState { .. }")
    }
}

impl RandomState {
    /// Use randomly generated keys
    #[inline]
    #[cfg(any(feature = "compile-time-rng", feature = "runtime-rng"))]
    pub fn new() -> RandomState {
        let src = get_src();
        let fixed = get_fixed_seeds();
        Self::from_keys(&fixed[0], &fixed[1], src.gen_hasher_seed())
    }

    /// Allows for supplying seeds, but each time it is called the resulting state will be different.
    /// This is done using a static counter, so it can safely be used with a fixed keys.
    #[inline]
    pub fn generate_with(k0: u64, k1: u64, k2: u64, k3: u64) -> RandomState {
        let src = get_src();
        let fixed = get_fixed_seeds();
        RandomState::from_keys(&fixed[0], &[k0, k1, k2, k3], src.gen_hasher_seed())
    }

    fn from_keys(a: &[u64; 4], b: &[u64; 4], c: usize) -> RandomState {
        let &[k0, k1, k2, k3] = a;
        let mut hasher = AHasher::from_random_state(&RandomState { k0, k1, k2, k3 });
        hasher.write_usize(c);
        let mix = |l: u64, r: u64| {
            let mut h = hasher.clone();
            h.write_u64(l);
            h.write_u64(r);
            h.finish()
        };
        RandomState {
            k0: mix(b[0], b[2]),
            k1: mix(b[1], b[3]),
            k2: mix(b[2], b[1]),
            k3: mix(b[3], b[0]),
        }
    }

    /// Internal. Used by Default.
    #[inline]
    pub(crate) fn with_fixed_keys() -> RandomState {
        let [k0, k1, k2, k3] = get_fixed_seeds()[0];
        RandomState { k0, k1, k2, k3 }
    }

    /// Allows for explicitly setting a seed to used.
    ///
    /// Note: This method does not require the provided seed to be strong.
    #[inline]
    pub fn with_seed(key: usize) -> RandomState {
        let fixed = get_fixed_seeds();
        RandomState::from_keys(&fixed[0], &fixed[1], key)
    }

    /// Allows for explicitly setting the seeds to used.
    ///
    /// Note: This method is robust against 0s being passed for one or more of the parameters
    /// or the same value being passed for more than one parameter.
    #[inline]
    pub const fn with_seeds(k0: u64, k1: u64, k2: u64, k3: u64) -> RandomState {
        RandomState { k0: k0 ^ PI2[0], k1: k1 ^ PI2[1], k2: k2 ^ PI2[2], k3: k3 ^ PI2[3] }
    }

    /// Calculates the hash of a single value.
    ///
    /// This is intended as a convenience for code which *consumes* hashes, such
    /// as the implementation of a hash table or in unit tests that check
    /// whether a custom [`Hash`] implementation behaves as expected.
    ///
    /// This must not be used in any code which *creates* hashes, such as in an
    /// implementation of [`Hash`].  The way to create a combined hash of
    /// multiple values is to call [`Hash::hash`] multiple times using the same
    /// [`Hasher`], not to call this method repeatedly and combine the results.
    #[inline]
    pub fn hash_one<T: Hash>(&self, x: T) -> u64
        where Self: Sized {
        use crate::specialize::CallHasher;
        T::get_hash(&x, self)
    }
}

#[cfg(any(feature = "compile-time-rng", feature = "runtime-rng"))]
impl Default for RandomState {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl BuildHasher for RandomState {
    type Hasher = AHasher;

    /// Constructs a new [AHasher] with keys based on this [RandomState] object.
    /// This means that two different [RandomState]s will will generate
    /// [AHasher]s that will return different hashcodes, but [Hasher]s created from the same [BuildHasher]
    /// will generate the same hashes for the same input data.
    ///
    #[cfg_attr(any(feature = "compile-time-rng", feature = "runtime-rng"), doc = r##" # Examples
```
        use ahash::{AHasher, RandomState};
        use std::hash::{Hasher, BuildHasher};
    
        let build_hasher = RandomState::new();
        let mut hasher_1 = build_hasher.build_hasher();
        let mut hasher_2 = build_hasher.build_hasher();
    
        hasher_1.write_u32(1234);
        hasher_2.write_u32(1234);
    
        assert_eq!(hasher_1.finish(), hasher_2.finish());
    
        let other_build_hasher = RandomState::new();
        let mut different_hasher = other_build_hasher.build_hasher();
        different_hasher.write_u32(1234);
        assert_ne!(different_hasher.finish(), hasher_1.finish());
```
    "##)]
    /// [Hasher]: std::hash::Hasher
    /// [BuildHasher]: std::hash::BuildHasher
    /// [HashMap]: std::collections::HashMap
    #[inline]
    fn build_hasher(&self) -> AHasher {
        AHasher::from_random_state(self)
    }

    /// Calculates the hash of a single value.
    ///
    /// This is intended as a convenience for code which *consumes* hashes, such
    /// as the implementation of a hash table or in unit tests that check
    /// whether a custom [`Hash`] implementation behaves as expected.
    ///
    /// This must not be used in any code which *creates* hashes, such as in an
    /// implementation of [`Hash`].  The way to create a combined hash of
    /// multiple values is to call [`Hash::hash`] multiple times using the same
    /// [`Hasher`], not to call this method repeatedly and combine the results.
    #[cfg(feature = "specialize")]
    #[inline]
    fn hash_one<T: Hash>(&self, x: T) -> u64 {
        RandomState::hash_one(self, x)
    }
}

#[cfg(feature = "specialize")]
impl BuildHasherExt for RandomState {
    #[inline]
    fn hash_as_u64<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = AHasherU64 {
            buffer: self.k0,
            pad: self.k1,
        };
        value.hash(&mut hasher);
        hasher.finish()
    }

    #[inline]
    fn hash_as_fixed_length<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = AHasherFixed(self.build_hasher());
        value.hash(&mut hasher);
        hasher.finish()
    }

    #[inline]
    fn hash_as_str<T: Hash + ?Sized>(&self, value: &T) -> u64 {
        let mut hasher = AHasherStr(self.build_hasher());
        value.hash(&mut hasher);
        hasher.finish()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_unique() {
        let a = RandomState::generate_with(1, 2, 3, 4);
        let b = RandomState::generate_with(1, 2, 3, 4);
        assert_ne!(a.build_hasher().finish(), b.build_hasher().finish());
    }

    #[cfg(all(feature = "runtime-rng", not(all(feature = "compile-time-rng", test))))]
    #[test]
    fn test_not_pi() {
        assert_ne!(PI, get_fixed_seeds()[0]);
    }

    #[cfg(all(feature = "compile-time-rng", any(not(feature = "runtime-rng"), test)))]
    #[test]
    fn test_not_pi_const() {
        assert_ne!(PI, get_fixed_seeds()[0]);
    }

    #[cfg(all(not(feature = "runtime-rng"), not(feature = "compile-time-rng")))]
    #[test]
    fn test_pi() {
        assert_eq!(PI, get_fixed_seeds()[0]);
    }

    #[test]
    fn test_with_seeds_const() {
        const _CONST_RANDOM_STATE: RandomState = RandomState::with_seeds(17, 19, 21, 23);
    }
}