1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
const NUM_DECIMALS: usize = 15;
pub fn best_in_range_f64(min: f64, max: f64) -> f64 {
if min.is_nan() {
return max;
}
if max.is_nan() {
return min;
}
if max < min {
return best_in_range_f64(max, min);
}
if min == max {
return min;
}
if min <= 0.0 && 0.0 <= max {
return 0.0; }
if min < 0.0 {
return -best_in_range_f64(-max, -min);
}
if !max.is_finite() {
return min;
}
crate::emath_assert!(min.is_finite() && max.is_finite());
let min_exponent = min.log10();
let max_exponent = max.log10();
if min_exponent.floor() != max_exponent.floor() {
let exponent = (min_exponent + max_exponent) / 2.0;
return 10.0_f64.powi(exponent.round() as i32);
}
if is_integer(min_exponent) {
return 10.0_f64.powf(min_exponent);
}
if is_integer(max_exponent) {
return 10.0_f64.powf(max_exponent);
}
let exp_factor = 10.0_f64.powi(max_exponent.floor() as i32);
let min_str = to_decimal_string(min / exp_factor);
let max_str = to_decimal_string(max / exp_factor);
let mut ret_str = [0; NUM_DECIMALS];
let mut i = 0;
while i < NUM_DECIMALS && max_str[i] == min_str[i] {
ret_str[i] = max_str[i];
i += 1;
}
if i < NUM_DECIMALS {
ret_str[i] = simplest_digit_closed_range(min_str[i] + 1, max_str[i]);
}
from_decimal_string(&ret_str) * exp_factor
}
fn is_integer(f: f64) -> bool {
f.round() == f
}
fn to_decimal_string(v: f64) -> [i32; NUM_DECIMALS] {
crate::emath_assert!(v < 10.0, "{:?}", v);
let mut digits = [0; NUM_DECIMALS];
let mut v = v.abs();
for r in &mut digits {
let digit = v.floor();
*r = digit as i32;
v -= digit;
v *= 10.0;
}
digits
}
fn from_decimal_string(s: &[i32]) -> f64 {
let mut ret: f64 = 0.0;
for (i, &digit) in s.iter().enumerate() {
ret += (digit as f64) * 10.0_f64.powi(-(i as i32));
}
ret
}
fn simplest_digit_closed_range(min: i32, max: i32) -> i32 {
crate::emath_assert!(1 <= min && min <= max && max <= 9);
if min <= 5 && 5 <= max {
5
} else {
(min + max) / 2
}
}
#[allow(clippy::approx_constant)]
#[test]
fn test_aim() {
assert_eq!(best_in_range_f64(-0.2, 0.0), 0.0, "Prefer zero");
assert_eq!(best_in_range_f64(-10_004.23, 3.14), 0.0, "Prefer zero");
assert_eq!(best_in_range_f64(-0.2, 100.0), 0.0, "Prefer zero");
assert_eq!(best_in_range_f64(0.2, 0.0), 0.0, "Prefer zero");
assert_eq!(best_in_range_f64(7.8, 17.8), 10.0);
assert_eq!(best_in_range_f64(99.0, 300.0), 100.0);
assert_eq!(best_in_range_f64(-99.0, -300.0), -100.0);
assert_eq!(best_in_range_f64(0.4, 0.9), 0.5, "Prefer ending on 5");
assert_eq!(best_in_range_f64(14.1, 19.99), 15.0, "Prefer ending on 5");
assert_eq!(best_in_range_f64(12.3, 65.9), 50.0, "Prefer leading 5");
assert_eq!(best_in_range_f64(493.0, 879.0), 500.0, "Prefer leading 5");
assert_eq!(best_in_range_f64(0.37, 0.48), 0.40);
assert_eq!(best_in_range_f64(7.5, 16.3), 10.0);
assert_eq!(best_in_range_f64(7.5, 76.3), 10.0);
assert_eq!(best_in_range_f64(7.5, 763.3), 100.0);
assert_eq!(best_in_range_f64(7.5, 1_345.0), 100.0);
assert_eq!(best_in_range_f64(7.5, 123_456.0), 1000.0, "Geometric mean");
assert_eq!(best_in_range_f64(9.9999, 99.999), 10.0);
assert_eq!(best_in_range_f64(10.000, 99.999), 10.0);
assert_eq!(best_in_range_f64(10.001, 99.999), 50.0);
assert_eq!(best_in_range_f64(10.001, 100.000), 100.0);
assert_eq!(best_in_range_f64(99.999, 100.000), 100.0);
assert_eq!(best_in_range_f64(10.001, 100.001), 100.0);
use std::f64::{INFINITY, NAN, NEG_INFINITY};
assert!(best_in_range_f64(NAN, NAN).is_nan());
assert_eq!(best_in_range_f64(NAN, 1.2), 1.2);
assert_eq!(best_in_range_f64(NAN, INFINITY), INFINITY);
assert_eq!(best_in_range_f64(1.2, NAN), 1.2);
assert_eq!(best_in_range_f64(1.2, INFINITY), 1.2);
assert_eq!(best_in_range_f64(INFINITY, 1.2), 1.2);
assert_eq!(best_in_range_f64(NEG_INFINITY, 1.2), 0.0);
assert_eq!(best_in_range_f64(NEG_INFINITY, -2.7), -2.7);
assert_eq!(best_in_range_f64(INFINITY, INFINITY), INFINITY);
assert_eq!(best_in_range_f64(NEG_INFINITY, NEG_INFINITY), NEG_INFINITY);
assert_eq!(best_in_range_f64(NEG_INFINITY, INFINITY), 0.0);
assert_eq!(best_in_range_f64(INFINITY, NEG_INFINITY), 0.0);
}